
Найдите корень уравнения, выраженный натуральным числом: 1) X (X+10)=119 2) X(X-18)=115 3) X
(X+2)=143

Ответы на вопрос

x=-b+-корень из D/2 (2-это знаменатель дроби)



1) X(X + 10) = 119
To find the root of this equation, we need to solve for X. Let's simplify the equation first by expanding the brackets:
X^2 + 10X = 119
Now, we have a quadratic equation. To solve it, we can either factorize or use the quadratic formula. In this case, let's use the quadratic formula:
The quadratic formula states that for an equation in the form Ax^2 + Bx + C = 0, the solutions for x are given by:
x = (-B ± √(B^2 - 4AC)) / (2A)
In our equation, A = 1, B = 10, and C = -119. Substituting these values into the quadratic formula, we get:
x = (-10 ± √(10^2 - 4(1)(-119))) / (2(1))
Simplifying further:
x = (-10 ± √(100 + 476)) / 2 x = (-10 ± √576) / 2 x = (-10 ± 24) / 2
Now we have two possible solutions:
x1 = (-10 + 24) / 2 = 14 / 2 = 7 x2 = (-10 - 24) / 2 = -34 / 2 = -17
However, we are looking for a natural number solution, which means x must be a positive integer. Therefore, the only valid solution is x = 7.
2) X(X - 18) = 115
Let's simplify the equation by expanding the brackets:
X^2 - 18X = 115
Again, we have a quadratic equation. Using the quadratic formula:
x = (-B ± √(B^2 - 4AC)) / (2A)
In our equation, A = 1, B = -18, and C = -115. Substituting these values into the quadratic formula, we get:
x = (-(-18) ± √((-18)^2 - 4(1)(-115))) / (2(1)) x = (18 ± √(324 + 460)) / 2 x = (18 ± √784) / 2 x = (18 ± 28) / 2
Now we have two possible solutions:
x1 = (18 + 28) / 2 = 46 / 2 = 23 x2 = (18 - 28) / 2 = -10 / 2 = -5
Since we are looking for a natural number solution, the only valid solution is x = 23.
3) X(X + 2) = 143
Let's simplify the equation by expanding the brackets:
X^2 + 2X = 143
Again, we have a quadratic equation. Using the quadratic formula:
x = (-B ± √(B^2 - 4AC)) / (2A)
In our equation, A = 1, B = 2, and C = -143. Substituting these values into the quadratic formula, we get:
x = (-2 ± √(2^2 - 4(1)(-143))) / (2(1)) x = (-2 ± √(4 + 572)) / 2 x = (-2 ± √576) / 2 x = (-2 ± 24) / 2
Now we have two possible solutions:
x1 = (-2 + 24) / 2 = 22 / 2 = 11 x2 = (-2 - 24) / 2 = -26 / 2 = -13
Since we are looking for a natural number solution, the only valid solution is x = 11.
In summary, the roots expressed as natural numbers for the given equations are: 1) x = 7 2) x = 23 3) x = 11


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili