
Решите систему уравнений


Ответы на вопрос





Solving the System of Equations
To solve the system of equations, we will use the given equations and find the values of x and y that satisfy both equations.
The system of equations is as follows:
Equation 1: 2x - y = 7 Equation 2: x^2 - xy = 12
To solve this system, we can use various methods such as substitution, elimination, or graphing. Let's use the substitution method.
Substitution Method
Step 1: Solve one equation for one variable in terms of the other variable.
Let's solve Equation 1 for x: 2x - y = 7 2x = y + 7 x = (y + 7)/2
Step 2: Substitute the expression for x in terms of y into the other equation.
Substituting x = (y + 7)/2 into Equation 2: (x^2) - (x * y) = 12 ((y + 7)/2)^2 - ((y + 7)/2) * y = 12
Simplifying the equation: (y^2 + 14y + 49)/4 - (y^2 + 7y)/2 = 12
Step 3: Solve the resulting equation for y.
Multiplying the equation by 4 to eliminate the denominator: (y^2 + 14y + 49) - 2(y^2 + 7y) = 48 y^2 + 14y + 49 - 2y^2 - 14y = 48 -y^2 + 49 = 48 -y^2 = -1 y^2 = 1 y = ±1
So, we have two possible values for y: y = 1 and y = -1.
Step 4: Substitute the values of y back into the expression for x to find the corresponding values of x.
For y = 1: x = (y + 7)/2 x = (1 + 7)/2 x = 8/2 x = 4
For y = -1: x = (y + 7)/2 x = (-1 + 7)/2 x = 6/2 x = 3
Therefore, the solutions to the system of equations are: (x, y) = (4, 1) and (x, y) = (3, -1).
Please let me know if you need any further assistance!


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili