Вопрос задан 15.10.2018 в 19:15. Предмет Алгебра. Спрашивает Гончар Настя.

Найдите значение выражения:log 1,5 log8 (4log3корень81 в 4 степени)

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кобызький Михаил.
Log2 5*log5 8=1/(log5 2)*log5 8= 3log 5 2/log5 2=3
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данного выражения воспользуемся некоторыми свойствами логарифмов.

1) Свойство логарифма суммы: log(a * b) = log(a) + log(b)

2) Свойство логарифма степени: log(a^b) = b * log(a)

3) Свойство логарифма корня: log(sqrt(a)) = 1/2 * log(a)

Исходное выражение: log(1,5) + log8 + (4 * log(3 * sqrt(81))^4)

Сначала вычислим значение логарифма каждого из этих слагаемых: log(1,5) ≈ 0,18 (округляем до двух знаков после запятой) log8 = log(2^3) = 3 * log2 ≈ 3 * 0,30 ≈ 0,90 (округляем до двух знаков после запятой) log(3 * sqrt(81)) = log(3 * 9) = log(27) = log(3^3) = 3 * log3 = 3 * 0,48 = 1,44 (округляем до двух знаков после запятой)

Подставляем значения в исходное выражение: 0,18 + 0,90 + (4 * 1,44^4)

Далее выполняем возведение в степень и умножение: 0,18 + 0,90 + (4 * 3,384)^4 ≈ 0,18 + 0,90 + (4 * 199,75)^4

Исчисляем значение в скобках: 0,18 + 0,90 + (4 * 199,75)^4 ≈ 0,18 + 0,90 + 799^4 ≈ 0,18 + 0,90 + 511196019201

Складываем два первых слагаемых и финальное значение: 0,18 + 0,90 + 511196019201 ≈ 0,18 + 0,90 + 511196019201 ≈ 511196019202,08

Итак, значение выражения log(1,5) + log8 + (4 * log(3 * sqrt(81))^4) равно примерно 511196019202,08.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос