
В треугольнике оху ох=оу = 5 cos x= 0,3 найдите сторону ху


Ответы на вопрос

Ответ: ХУ = 3



Для решения этой задачи, мы можем использовать теорему косинусов, которая связывает длины сторон треугольника с косинусами его углов.
Теорема косинусов гласит: в треугольнике со сторонами a, b и c и углом α против стороны a, косинус этого угла равен (b² + c² - a²) / (2bc).
В данном случае у нас есть треугольник оху, где известны длины сторон ох и оу, а также угол x. Давайте обозначим сторону ху как c, сторону ох как b и сторону оу как a.
Исходя из данного уравнения: ох + оу = 5cos(x) = 0.3, мы можем записать, что ох = 5cos(x) - оу.
Теперь мы можем использовать теорему косинусов, чтобы выразить сторону ху через ох и оу:
cos(x) = (b² + c² - a²) / (2bc)
Подставим ох = 5cos(x) - оу:
cos(x) = (5cos(x) - оу)² + c² - оу²) / (2(5cos(x) - оу)c)
Теперь мы можем решить это уравнение относительно стороны ху (c) при известных значениях ох и оу.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili