
Баржа шла по течению реки 64 км и, повернула обратно, прошла ещё 48 км, затратив на весь путь 8
часов. Найдите собственную скорость баржи, если скорость течения реки равна 5км/ч.

Ответы на вопрос

но скорость баржи не может быть отрицательной, следовательно V=15 км/ч



Problem Analysis
We are given that a barge travels downstream on a river for 64 km, then turns back and travels upstream for an additional 48 km. The total time taken for the entire journey is 8 hours. We are also given that the speed of the river's current is 5 km/h. We need to find the speed of the barge.Solution
Let's assume the speed of the barge is x km/h.When the barge is traveling downstream, its effective speed is the sum of its own speed and the speed of the river's current. Therefore, the effective speed is (x + 5) km/h.
When the barge is traveling upstream, its effective speed is the difference between its own speed and the speed of the river's current. Therefore, the effective speed is (x - 5) km/h.
We can now calculate the time taken for each leg of the journey using the formula:
Time = Distance / Speed
For the downstream journey: Time taken = Distance / Effective speed = 64 km / (x + 5) km/h
For the upstream journey: Time taken = Distance / Effective speed = 48 km / (x - 5) km/h
The total time taken for the entire journey is given as 8 hours. Therefore, we can write the equation:
64 / (x + 5) + 48 / (x - 5) = 8
Now, let's solve this equation to find the value of x, which represents the speed of the barge.
Calculation
To solve the equation, we can start by simplifying it:64 / (x + 5) + 48 / (x - 5) = 8
Multiplying both sides of the equation by (x + 5)(x - 5) to eliminate the denominators:
64(x - 5) + 48(x + 5) = 8(x + 5)(x - 5)
Expanding and simplifying:
64x - 320 + 48x + 240 = 8(x^2 - 25)
112x - 80 = 8x^2 - 200
Rearranging the equation:
8x^2 - 112x + 120 = 0
Dividing the entire equation by 8:
x^2 - 14x + 15 = 0
Now, we can solve this quadratic equation using factoring or the quadratic formula. Let's use factoring:
(x - 1)(x - 15) = 0
This gives us two possible values for x: x = 1 or x = 15.
However, we need to consider the physical context of the problem. The speed of the barge cannot be negative, so we can discard the solution x = 1.
Therefore, the speed of the barge is 15 km/h.
Answer
The speed of the barge is 15 km/h.

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili