
Задача Турист проплыл 6 км против течения реки и 15 км озером, потратив на путь озером на 1 час.
больше, чем на путь по реке. Найти собственную путь скорость лодки, если скорость реки 2 км / ч.

Ответы на вопрос

Время по реке 6 : ( х-2), по озеру 15 : х. .
15 / х - 6 / (х-2) = 1
15х - 30 - 6х = х квадрат - 2х
х1 = 5км/ч, х2 = 6 км/ч.



Тогда скорость по течению (х+2) км/ч, против течения (х-2) км/ч.
Время против течения
Время по озеру
Составим уравнение.



Problem Analysis
The problem states that a tourist swam 6 km against the current of a river and then swam 15 km across a lake. The time taken to swim across the lake was 1 hour more than the time taken to swim against the current of the river. The speed of the river is given as 2 km/h. We need to find the speed of the tourist's boat.Solution
Let's assume the speed of the tourist's boat is x km/h.The time taken to swim against the current of the river is given by the formula: time = distance / speed
Therefore, the time taken to swim against the current of the river is: 6 km / (x - 2 km/h)
The time taken to swim across the lake is given by the formula: time = distance / speed
Therefore, the time taken to swim across the lake is: 15 km / x km/h
According to the problem, the time taken to swim across the lake is 1 hour more than the time taken to swim against the current of the river. So we can set up the following equation:
15 km / x km/h = 6 km / (x - 2 km/h) + 1 hour
Let's solve this equation to find the value of x.
Calculation
To solve the equation, we can start by multiplying both sides of the equation by x(x - 2) to eliminate the denominators:15(x - 2) = 6x + x(x - 2)
Simplifying the equation:
15x - 30 = 6x + x^2 - 2x
Combining like terms:
x^2 + 7x - 30 = 0
Now we can solve this quadratic equation using factoring, completing the square, or the quadratic formula. Let's use the quadratic formula:
x = (-b ± √(b^2 - 4ac)) / (2a)
For our equation, a = 1, b = 7, and c = -30. Substituting these values into the quadratic formula:
x = (-7 ± √(7^2 - 4(1)(-30))) / (2(1))
Simplifying:
x = (-7 ± √(49 + 120)) / 2
x = (-7 ± √169) / 2
x = (-7 ± 13) / 2
So we have two possible solutions for x:
x1 = (-7 + 13) / 2 = 3 km/h
x2 = (-7 - 13) / 2 = -10 km/h
Since speed cannot be negative, we discard the negative solution. Therefore, the speed of the tourist's boat is 3 km/h.
Answer
The speed of the tourist's boat is 3 km/h.

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili