
Ребят помогите пожалуйста Из пункта А в пункт В , расстояние между которыми 300 км выехал
автомобиль.Через 30 мин выехал другой автомобиль. Через 2 часа автомобили встретились. Найдите скорости автомобилей , если известно , что , выехав одновременно , автомобили встретились бы через 2 2/9 часа.

Ответы на вопрос

30мин=30/60ч=0,5ч
300:2 2/9=300:20/9=300*9/20=30*9/2=15*9=135 км/ч-скорость сближения
х-скорость первого
135-х-скорость второго
0,5х+135*2=300
0,5х+270=300
0,5х=30
х=30/0,5=300/5=60 км/ч-скорость первого
135-60=75 км/ч-скорость второго



Problem Analysis
We are given that two cars start from point A and point B, which are 300 km apart. One car starts 30 minutes before the other. After 2 hours, the cars meet each other. We need to find the speeds of the cars.Solution
Let's assume the speed of the first car is x km/h and the speed of the second car is y km/h.We know that the distance traveled by the first car in 2 hours is 2x km, and the distance traveled by the second car in 2 hours is 2y km.
Since the cars meet each other after 2 hours, the total distance traveled by both cars is equal to the distance between point A and point B, which is 300 km.
So, we can write the equation: 2x + 2y = 300.
We also know that the first car started 30 minutes (0.5 hours) before the second car. Therefore, the first car traveled for 2 hours + 0.5 hours = 2.5 hours, while the second car traveled for 2 hours.
We are given that if the cars had started at the same time, they would have met after 2 2/9 hours. So, we can write another equation: 2.5x + 2y = 2 2/9 * (x + y).
Now, we have a system of two equations with two variables. We can solve this system to find the values of x and y.
Solving the System of Equations
To solve the system of equations, we can use substitution or elimination method. Let's use the elimination method.Multiplying the first equation by 2/9, we get: (4/9)x + (4/9)y = 100/3.
Subtracting this equation from the second equation, we get: 2.5x + 2y - (4/9)x - (4/9)y = 2 2/9 * (x + y) - 100/3.
Simplifying the equation, we get: (22/9)x + (14/9)y = 200/9.
Now, we have a new equation: (22/9)x + (14/9)y = 200/9.
Multiplying the first equation by 14/9, we get: (28/9)x + (28/9)y = 1400/9.
Subtracting this equation from the new equation, we get: (22/9)x + (14/9)y - (28/9)x - (28/9)y = 200/9 - 1400/9.
Simplifying the equation, we get: -(6/9)x = -1200/9.
Simplifying further, we get: -(2/3)x = -400/3.
Dividing both sides by -(2/3), we get: x = (400/3) / (2/3).
Simplifying, we get: x = 200.
Now, we can substitute the value of x into the first equation to find the value of y.
Substituting x = 200 into the equation 2x + 2y = 300, we get: 2(200) + 2y = 300.
Simplifying, we get: 400 + 2y = 300.
Subtracting 400 from both sides, we get: 2y = -100.
Dividing both sides by 2, we get: y = -50.
Since speed cannot be negative, we discard the negative value of y.
Therefore, the speed of the first car is 200 km/h and the speed of the second car is 50 km/h.
Answer
The speed of the first car is 200 km/h and the speed of the second car is 50 km/h.

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili