
Как сократить дробь 3b²-3c² ------------------ (b-c)(3b+3)


Ответы на вопрос

3(b+c)(b-c) - так выглядит после =



Чтобы сократить данную дробь, нужно разложить числитель на множители и проверить, сокращаются ли они с знаменателем.
Начнем с числителя: 3b² - 3c². Обратите внимание, что здесь есть общий множитель 3. Мы можем вынести его за скобки:
3(b² - c²).
Затем, мы можем воспользоваться формулой разности квадратов, чтобы разложить скобку:
3((b - c)(b + c)).
Теперь числитель имеет вид 3(b - c)(b + c).
Перейдем к знаменателю: (b - c)(3b + 3). Здесь мы видим, что общий множитель (b - c) с числителем. Мы можем сократить эти две скобки:
3(b + c).
Итак, итоговая сокращенная дробь будет:
(3(b - c)(b + c))/(3(b + c)).
Заметим, что оставшаяся часть дроби (b + c) в числителе и знаменателе сокращается, и мы получаем:
(b - c)/(1).
Таким образом, сокращенная форма данной дроби равна (b - c).


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili