Вопрос задан 07.08.2018 в 19:43. Предмет Алгебра. Спрашивает Дуров Саша.

А)-7x+5(2x-3)=6 б)5x-7(3-x)=2x+11 ----------------------- a)(x+3)^2-x^2=33 б)x^2-(x-5)^2=10

____________ если чё то ^2это во 2 степени
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Жуматаева Камила.
А) -7х+5(2х-3)=6
-7х+10х-15=6
3х-15=6
3х=21
х=7

б) 5х-21+7х=2х+11
13х-21=2х+11
11х=32
х=32/11

_____

а)х^2+6х+9-х2=33
6х+9=33
6х=24
х=4

0 0
Отвечает Петрова Алина.
А)-7x+5(2x-3)=6
-7x+10x-15=6
3x=21
x=7
б)5x-7(3-x)=2x+11
5x-21+7x=2x+11
10x=32
x=3.2
-----------------------
a)(x+3)^2-x^2=33
x^2+6x+9-x^2=33
6x=24
x=4
б)x^2-(x-5)^2=10
x^2-x^2+10x-25=10
x=3.5
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Sure! Let's break down each equation and solve for the value of x step by step.

Equation A: -7x + 5(2x - 3) = 6

To solve this equation, we'll start by distributing the 5 to the terms inside the parentheses:

-7x + 10x - 15 = 6

Combining like terms, we have:

3x - 15 = 6

Next, we'll isolate the variable x by adding 15 to both sides of the equation:

3x = 21

Finally, we'll solve for x by dividing both sides of the equation by 3:

x = 7

So the solution to equation A is x = 7.

Equation B: 5x - 7(3 - x) = 2x + 11

We'll begin by distributing the -7 to the terms inside the parentheses:

5x - 21 + 7x = 2x + 11

Next, we'll combine like terms:

12x - 21 = 2x + 11

To isolate the variable x, we'll subtract 2x from both sides:

10x - 21 = 11

Then, we'll add 21 to both sides:

10x = 32

Finally, we'll divide both sides by 10 to solve for x:

x = 3.2

So the solution to equation B is x = 3.2.

Equation C: (x + 3)^2 - x^2 = 33

To solve this equation, we'll start by expanding the square term on the left side:

(x^2 + 6x + 9) - x^2 = 33

Next, we'll simplify the equation by combining like terms:

6x + 9 = 33

Then, we'll isolate the variable x by subtracting 9 from both sides:

6x = 24

Finally, we'll divide both sides by 6 to solve for x:

x = 4

So the solution to equation C is x = 4.

Equation D: x^2 - (x - 5)^2 = 10

To solve this equation, we'll start by expanding the square term on the right side:

x^2 - (x^2 - 10x + 25) = 10

Next, we'll simplify the equation by removing the parentheses and combining like terms:

x^2 - x^2 + 10x - 25 = 10

Simplifying further, we have:

10x - 25 = 10

To isolate the variable x, we'll add 25 to both sides:

10x = 35

Finally, we'll divide both sides by 10 to solve for x:

x = 3.5

So the solution to equation D is x = 3.5.

In summary, the solutions to the given equations are: - Equation A: x = 7 - Equation B: x = 3.2 - Equation C: x = 4 - Equation D: x = 3.5

I hope this helps! Let me know if you have any further questions.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос