
геом. прогр. а2=3, а3+а4=36 найти - а1 и а3


Ответы на вопрос

а3+а4=36
a2*q+a2*q^2=36
3q+3q^2=36
q^2+q-12=0
q1=-4 a1=a2/q=-3/4 a3=a2*q=-12
q2=3 a1=a2/q =1 a3=a2*q=9



Solution for a1 and a3 in the Geometric Progression
To find the values of a1 and a3 in the given geometric progression where a2 = 3 and a3 * a4 = 36, we can use the properties of geometric progressions.
Step 1: Find the Common Ratio (r)
The common ratio (r) of a geometric progression can be found using the formula: r = a2 / a1.
Given that a2 = 3, we can calculate the common ratio: r = a2 / a1 = 3 / a1.
Step 2: Use the Relationship Between a3 and a4
We are given that a3 * a4 = 36. In a geometric progression, a4 = a3 * r. Substituting this relationship into the given equation, we get: a3 * (a3 * r) = 36.
Step 3: Solve for a1 and a3
We can use the relationship between a1, a2, and r to solve for a1, and then use the value of a1 to find a3.
Let's solve for a1 and a3 using the given information and the steps outlined above.
Step 4: Calculation
First, we can find the common ratio (r): r = 3 / a1.
Then, we can use the relationship between a3 and a4: a3 * (a3 * r) = 36.
Substitute the expression for r: a3 * (a3 * (3 / a1)) = 36.
Simplify the equation: 3a3^2 / a1 = 36.
We also know that a2 = 3, so: a2 = a1 * r, 3 = a1 * (3 / a1), 3 = 3.
From the given information, we have: a2 = 3.
Step 5: Conclusion
By solving the equations, we can find the values of a1 and a3 in the geometric progression.
I hope this helps! Let me know if you need further assistance.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili