
У=-(х+6)^2+5 найдите вершину параболы.


Ответы на вопрос




Поиск вершины параболы
Для нахождения вершины параболы в форме у = a(x - h)^2 + k, где (h, k) - координаты вершины, необходимо:
1. Извлечь коэффициенты a, h и k из уравнения. 2. Использовать формулы вершины параболы: h = -b/(2a) и k = c - b^2/(4a), где уравнение параболы имеет форму ax^2 + bx + c.
Решение:
У нас дано уравнение параболы в форме у = -(x + 6)^2 + 5.
Сравнивая с общим видом уравнения параболы у = a(x - h)^2 + k, мы можем выделить коэффициенты: - a = -1, - h = -6, - k = 5.
Теперь, используя формулы, найдем координаты вершины параболы: h = -(-6)/(2*(-1)) = -(-6)/(-2) = 6/(-2) = -3, k = 5 - (-1)^2/(4*(-1)) = 5 - 1/(-4) = 5 + 1/4 = 5.25.
Таким образом, вершина параболы имеет координаты (-3, 5.25).
Итак, вершина параболы у = -(x + 6)^2 + 5 находится в точке (-3, 5.25).


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili