
Велосипедист выехал с постоянной скоростью из города города А в город В расстояние между которыми
равно 110 км. На следующий день он отправился обратно со скоростью 1 км/ч больше прежней. По дороге он сделал остановку на 1 час. В результате затратил на обратный путь столько же времени,сколько на путь из А в В. Найдите скорость велосипедиста на пути из А в В. Ответ дай в км/ч

Ответы на вопрос





Problem Analysis
We are given that a cyclist travels from city A to city B at a constant speed. The distance between the two cities is 110 km. On the next day, the cyclist returns from city B to city A at a speed that is 1 km/h faster than the previous day. The cyclist also makes a 1-hour stop during the return journey. We need to find the speed of the cyclist on the journey from city A to city B.Solution
Let's assume the speed of the cyclist on the journey from city A to city B is x km/h.On the journey from city B to city A, the cyclist's speed is (x + 1) km/h due to the increase in speed.
We are given that the time taken for the return journey (from city B to city A) is the same as the time taken for the initial journey (from city A to city B).
To find the speed of the cyclist on the journey from city A to city B, we can set up an equation based on the time and distance traveled.
The time taken for the initial journey (from city A to city B) can be calculated using the formula: time = distance / speed.
The time taken for the return journey (from city B to city A) can be calculated using the formula: time = distance / speed + 1 (since the cyclist made a 1-hour stop).
Setting up the equation:
110 / x = 110 / (x + 1) + 1
To solve this equation, we can cross-multiply and simplify:
110(x + 1) = 110x + x(x + 1)
Simplifying further:
110x + 110 = 110x + x^2 + x
x^2 + x - 110 = 0
Now we can solve this quadratic equation to find the value of x.
Using the quadratic formula: x = (-b ± √(b^2 - 4ac)) / 2a, where a = 1, b = 1, and c = -110.
Calculating the discriminant: D = b^2 - 4ac = 1^2 - 4(1)(-110) = 1 + 440 = 441
Since the discriminant is positive, we have two real solutions for x.
Using the quadratic formula:
x = (-1 ± √441) / 2(1)
Simplifying further:
x = (-1 ± 21) / 2
We have two possible values for x:
1. x = (-1 + 21) / 2 = 20 / 2 = 10 km/h 2. x = (-1 - 21) / 2 = -22 / 2 = -11 km/h
Since the speed of the cyclist cannot be negative, we can discard the second solution.
Therefore, the speed of the cyclist on the journey from city A to city B is 10 km/h.
Answer
The speed of the cyclist on the journey from city A to city B is 10 km/h.

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili