Вопрос задан 05.12.2023 в 06:19. Предмет Алгебра. Спрашивает Серебров Вадим.

Решить уравнение: 1-ctg²x=2ctgx​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кугин Александр.

Ответ:

x =  \frac{\pi}{4}

Объяснение:

(  {ctgx - 1) }^{2}  = 0

ctgx = 1

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Решение уравнения 1 - ctg²x = 2ctgx

Для начала, давайте преобразуем уравнение, используя тригонометрические тождества.

1. Заменим ctgx на 1/tgx: 1 - (1/tgx)² = 2 * (1/tgx) 2. Перенесем все члены уравнения на одну сторону: 1 - 1/tgx² - 2/tgx = 0 3. Объединим дроби в одну: (tgx - 1)² = 0

Теперь у нас получилось уравнение (tgx - 1)² = 0. Решим его.

4. Извлечем квадратный корень: tgx - 1 = 0 5. Добавим 1 к обеим сторонам: tgx = 1 6. Найдем обратный тангенс от обеих сторон: x = arctg(1)

Так как тангенс 45 градусов равен 1, мы можем выразить ответ как: x = π/4 + πn, где n - любое целое число.

Таким образом, решение уравнения 1 - ctg²x = 2ctgx: x = π/4 + πn, где n - целое число.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос