Вопрос задан 15.11.2023 в 10:09. Предмет Алгебра. Спрашивает Алексеева Ксения.

Упростите выражение ху(x-y) -(x²-y²) (x-2y)

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Позик Аня.

xy(x-y)-(x^2-y^2)(x-2y)=xy(x-y)-(x-y)(x+y)(x-2y)=\\\\=(x-y)(xy-(x+y)(x-2y))=(x-y)(xy-(x^2+xy-2xy-2y^2))=\\\\=(x-y)(xy-x^2-xy+2xy+2y^2)=(x-y)(2xy-x^2+2y^2)

0 0
Отвечает Чёрный Саша.

Ответ:

ху(x-y)-(x²-y²)(x-2y) = (x-y)(2y²+2xy-x²)

Объяснение:

ху(x-y)-(x²-y²)(x-2y) = ху(x-y)-(x-y)(x+y)(x-2y) = (x-y)(xy-(x+y)(x-2y)) = (x-y)(xy-(x²-2xy+xy-2y²)) = (x-y)(xy-x²+xy+2y²) = (x-y)(2y²+2xy-x²)

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для упрощения данного выражения давайте разложим каждое слагаемое и затем объединим подобные члены.

У нас есть выражение:

\[h(x-y) - (x^2 - y^2) + (x - 2y)\]

1. Раскроем скобки в первом слагаемом:

\[h(x-y) = hx - hy\]

2. Раскроем скобки во втором слагаемом (разность квадратов):

\[-(x^2 - y^2) = -x^2 + y^2\]

3. Оставляем третье слагаемое без изменений:

\[x - 2y\]

Теперь объединим все слагаемые:

\[hx - hy - x^2 + y^2 + x - 2y\]

Теперь упростим, сгруппировав подобные члены:

\[-x^2 + hx + x - hy - 2y + y^2\]

Объединим \(x\) и \(-x^2\), а также \(-2y\) и \(-hy\):

\[-x^2 + hx + x - hy - 2y + y^2 = -x^2 + x + hx - hy - 2y + y^2\]

Таким образом, упрощенное выражение:

\[-x^2 + x + hx - hy - 2y + y^2\]

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос