Вопрос задан 30.07.2018 в 06:08. Предмет Алгебра. Спрашивает Занозин Александр.

упростите выражение a-b\4b^3*8b^4\a^2-ab

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Силантьева Дана.
................................

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для того чтобы упростить выражение (a - b) / (4b^3 * 8b^4 / a^2 - ab), мы можем разбить его на несколько более простых шагов. Давайте начнем.

Шаг 1: Упрощение знаменателя

Для начала, давайте упростим знаменатель выражения (4b^3 * 8b^4 / a^2 - ab).

Сначала перемножим числители и знаменатели, чтобы получить одно выражение: 32b^7 / (a^2 - ab).

Шаг 2: Факторизация знаменателя

Теперь мы можем факторизовать знаменатель выражения (a^2 - ab).

Заметим, что оба терма имеют общий множитель a. Таким образом, мы можем вынести этот общий множитель: a(a - b).

Теперь наше выражение становится: 32b^7 / [a(a - b)].

Шаг 3: Сокращение общих множителей

Мы видим, что у нас есть общий множитель в числителе и знаменателе, а именно b^7. Мы можем сократить этот общий множитель:

32b^7 / [a(a - b)] = (32 / a) * (b^7 / (a - b)).

Шаг 4: Упрощение числителя

Осталось упростить числитель. В данном случае, числитель уже находится в простейшем виде, так что мы не можем его дальше упростить.

Окончательный ответ

Итак, окончательное упрощенное выражение (a - b) / (4b^3 * 8b^4 / a^2 - ab) равно:

(32 / a) * (b^7 / (a - b)).

Надеюсь, это помогло вам понять, как упростить данное выражение. Если у вас возникнут еще вопросы, не стесняйтесь задавать!

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос