
Найдите все отрицательные значения параметра а, при которых система уравнения
{█(2√(y^2-4y+4)+3|x|=11-y,@〖25x〗^2-20ax=y^2-〖4a〗^2 )┤ имеет одно решение. Если такое значение одно, то запишите его в ответ. Если таких значений несколько, то в ответ записать его сумму.

Ответы на вопрос

Но наверное решается так, сначала решается эта пара уравнений:
3x-2y=7
x+y=4
3x-2y=7
2x+2y=8
Тогда х=3, у=1
Теперь эти значения подставляем в третье уравнение:
2x-y=p
2*3-1=р
р=5
Ответ: при р=5 система имеет решение.



Finding Negative Values of Parameter a for a System of Equations
To find the negative values of parameter a for which the system of equations has exactly one solution, let's analyze the given system of equations:
Equation 1: 2√(y^2-4y+4) + 3|x| = 11 - y Equation 2: 25x^2 - 20ax = y^2 - 4a^2
We want to find the values of parameter a that result in a unique solution for this system.
To begin, let's consider Equation 1. The expression 2√(y^2-4y+4) involves the square root of a quadratic expression. For a real solution, the discriminant of the quadratic expression must be greater than or equal to zero.
The discriminant of the quadratic expression y^2-4y+4 is given by b^2 - 4ac, where a = 1, b = -4, and c = 4. Evaluating the discriminant, we have:
(-4)^2 - 4(1)(4) = 16 - 16 = 0
Since the discriminant is equal to zero, the quadratic expression y^2-4y+4 has a double root. This means that Equation 1 has a unique solution only when the expression inside the square root is equal to zero.
Now, let's consider Equation 2. We want to find the values of parameter a that result in a unique solution for this equation.
The equation 25x^2 - 20ax = y^2 - 4a^2 represents a quadratic equation in terms of x. For a unique solution, the discriminant of this quadratic equation must be equal to zero.
The discriminant of the quadratic equation 25x^2 - 20ax - (y^2 - 4a^2) is given by b^2 - 4ac, where a = 25, b = -20a, and c = -(y^2 - 4a^2). Evaluating the discriminant, we have:
(-20a)^2 - 4(25)(-(y^2 - 4a^2)) = 400a^2 + 100(y^2 - 4a^2) = 400a^2 + 100y^2 - 400a^2 = 100y^2
Since the discriminant is equal to zero, the quadratic equation has a unique solution only when 100y^2 = 0. This implies that y must be equal to zero.
To summarize, for the given system of equations to have exactly one solution, we need the following conditions to be satisfied:
1. The expression inside the square root in Equation 1, y^2-4y+4, must be equal to zero. 2. The value of y must be zero.
Now, let's find the negative values of parameter a that satisfy these conditions.
1. Condition 1: The expression inside the square root in Equation 1, y^2-4y+4, must be equal to zero.
To find the values of y that satisfy this condition, we can solve the quadratic equation y^2-4y+4 = 0. Factoring the quadratic equation, we have:
(y-2)^2 = 0
This equation has a double root at y = 2. Therefore, the expression inside the square root in Equation 1 is equal to zero when y = 2.
2. Condition 2: The value of y must be zero.
Combining both conditions, we find that the system of equations has exactly one solution when y = 2 and a < 0.
Therefore, the negative values of parameter a that satisfy the conditions are a < 0.
To summarize, the negative values of parameter a for which the system of equations has exactly one solution are a < 0.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili