
найдите значение выражения:-6(ctg 13п/10) tg (п/5)


Ответы на вопрос

Представим котангенс в числителе в виде
По формуле разности углов котангенсов
Теперь подставим, получившееся значение в саму формулу
По свойству тангенсов и котангенсов
Получаем
Ответ: 6



Для начала, давайте вычислим значение выражения -6(ctg(13π/10)) + tg(π/5) по порядку.
1. Найдем значение ctg(13π/10): ctg(α) - это котангенс угла α, который определяется как обратный тангенс косинуса угла α. Таким образом, ctg(α) = 1/tan(α). В данном случае, α = 13π/10. Вычислим ctg(13π/10): ctg(13π/10) = 1/tan(13π/10). Теперь найдем значение tan(13π/10): tan(α) - это тангенс угла α, который определяется как отношение синуса угла α к косинусу угла α. В данном случае, α = 13π/10. Вычислим sin(13π/10) и cos(13π/10) с помощью тригонометрических формул: sin(13π/10) = sin(π - 7π/10) = -sin(7π/10) = -sin(π/10). cos(13π/10) = cos(π - 7π/10) = -cos(7π/10) = -cos(π/10). Мы знаем, что sin(π/10) = cos(π/10) по свойству симметрии синуса и косинуса. Таким образом, sin(13π/10) = -cos(13π/10). Возвращаясь к нашему выражению, получаем: tan(13π/10) = sin(13π/10) / cos(13π/10) = -cos(13π/10) / cos(13π/10) = -1. Теперь можем вычислить ctg(13π/10): ctg(13π/10) = 1 / tan(13π/10) = 1 / -1 = -1.
2. Вычислим значение tg(π/5): tg(α) - это тангенс угла α, который определяется как отношение синуса угла α к косинусу угла α. В данном случае, α = π/5. Вычислим sin(π/5) и cos(π/5) с помощью тригонометрических формул: sin(π/5) = sin(2π/10) = sin(2π/10) = sin(π/10). cos(π/5) = cos(2π/10) = cos(2π/10) = cos(π/10). Таким образом, sin(π/5) = sin(π/10) и cos(π/5) = cos(π/10). Возвращаясь к нашему выражению, получаем: tg(π/5) = sin(π/5) / cos(π/5) = sin(π/10) / cos(π/10).
Теперь, когда у нас есть значения ctg(13π/10) и tg(π/5), мы можем вычислить итоговое значение выражения -6(ctg(13π/10)) + tg(π/5).
-6(ctg(13π/10)) + tg(π/5) = -6(-1) + (sin(π/10) / cos(π/10)).
Упрощая это выражение, получаем:
-6(-1) + (sin(π/10) / cos(π/10)) = 6 + (sin(π/10) / cos(π/10)).
Но без точных значений для sin(π/10) и cos(π/10) мы не можем вычислить точное числовое значение этого выражения.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili