
Почему, находя f(x)=√x, мы получаем производную, равную 1/2√x? Если кто сможет, объясните
пожалуйста.

Ответы на вопрос




Understanding the Derivative of f(x) = √x
When we calculate the derivative of the function f(x) = √x, we get a result of 1/(2√x). This can be explained through the process of finding the derivative of a square root function.
The derivative of a function represents the rate of change of the function with respect to its variable. In the case of f(x) = √x, we can use the power rule for differentiation to find its derivative.
The power rule states that if we have a function of the form f(x) = x^n, then its derivative is given by f'(x) = nx^(n-1).
In the case of f(x) = √x, we can rewrite it as f(x) = x^(1/2). Applying the power rule, the derivative of f(x) = √x is:
f'(x) = (1/2)x^(-1/2) = 1/(2√x).
This result shows that the derivative of f(x) = √x is 1/(2√x), which aligns with the standard derivative rule for the square root function.
In summary, the derivative of f(x) = √x is 1/(2√x) because of the application of the power rule for differentiation, which yields the rate of change of the square root function with respect to its variable.
I hope this explanation helps! If you have further questions or need more clarification, feel free to ask.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili