
Вопрос задан 31.10.2023 в 06:38.
Предмет Алгебра.
Спрашивает Архипова Настя.
Дана арифметическая прогрессия (an). Известно, что a1=1,9 и d=1,5. Вычисли сумму первых семи
членов арифметической прогрессии. Запиши ответ в виде числа, при необходимости округлив его до десятых

Ответы на вопрос

Отвечает Voytenko Vetall.
Ответ:
44,8
............




Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
To find the sum of the first seven terms of an arithmetic progression, we can use the formula:
Sn = (n/2)(2a1 + (n-1)d)
where Sn is the sum of the first n terms, a1 is the first term, and d is the common difference.
In this case, we are given that a1 = 1.9 and d = 1.5. We need to find the sum of the first seven terms, so n = 7.
Plugging in the values into the formula, we get:
S7 = (7/2)(2(1.9) + (7-1)(1.5))
Calculating this expression, we find:
S7 = (7/2)(3.8 + 6(1.5))
S7 = (7/2)(3.8 + 9)
S7 = (7/2)(12.8)
S7 = 7(6.4)
S7 = 44.8
Therefore, the sum of the first seven terms of the arithmetic progression is approximately 44.8 when rounded to the nearest tenth.


Похожие вопросы

Алгебра 1
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili