Вопрос задан 27.10.2023 в 05:30. Предмет Алгебра. Спрашивает Кот Тина.

Sin квадрат x+2sin2x+3cos квадрат x

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Миронова Марьяна.
Расписываем синус двойного угла,и 5 заменяем на 5sin^2+5cos^2-4cos^2+4sincos-2sin^2=02cos^2-2sincos+sin^2=0делим на sin^22(cos/sin)^2-2(cos/sin)+1=0D/4=1-2<0=> решений нет
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте разберем ваше выражение поэлементно и упростим его. У вас есть следующее выражение:

\[ \sin^2(x) + 2\sin(2x) + 3\cos^2(x) \]

Для упрощения этого выражения используем тригонометрические тождества. Начнем с формулы двойного угла:

\[ \sin(2x) = 2\sin(x)\cos(x) \]

Теперь заметим, что:

\[ \cos^2(x) = 1 - \sin^2(x) \]

Используя эти тождества, мы можем переписать ваше выражение:

\[ \sin^2(x) + 2\sin(2x) + 3\cos^2(x) = \sin^2(x) + 2(2\sin(x)\cos(x)) + 3(1 - \sin^2(x)) \]

Теперь давайте упростим это выражение:

\[ \sin^2(x) + 2(2\sin(x)\cos(x)) + 3(1 - \sin^2(x)) = \sin^2(x) + 4\sin(x)\cos(x) + 3 - 3\sin^2(x) \]

Теперь объединим подобные члены:

\[ \sin^2(x) + 4\sin(x)\cos(x) + 3 - 3\sin^2(x) = (1 - 3\sin^2(x)) + 4\sin(x)\cos(x) + 3 \]

Теперь заметим, что \(1 - 3\sin^2(x) = \cos^2(x)\), и мы можем использовать формулу двойного угла для \(\sin(2x)\):

\[ \cos^2(x) + 4\sin(x)\cos(x) + 3 = \cos^2(x) + 2\sin(2x) + 3 \]

Теперь вы можете видеть, что у нас есть выражение, которое можно упростить с использованием формулы для \(\sin(2x)\):

\[ \cos^2(x) + 2\sin(2x) + 3 = \cos^2(x) + 2\cdot 2\sin(x)\cos(x) + 3 \]

\[ \cos^2(x) + 4\sin(x)\cos(x) + 3 = (\cos(x) + 2\sin(x))^2 \]

Итак, упростив данное выражение, мы получаем:

\[ (\cos(x) + 2\sin(x))^2 \]

Это и есть упрощенное выражение для \( \sin^2(x) + 2\sin(2x) + 3\cos^2(x) \).

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос