
Cos(2П/3-a)-cos(a+П/3)


Ответы на вопрос




To simplify the expression cos(2π/3 - a) - cos(a + π/3), you can use trigonometric identities.
First, let's use the difference of angles identity for cosine:
cos(A - B) = cos(A)cos(B) + sin(A)sin(B)
In this case, let A = 2π/3 and B = a, so we have:
cos(2π/3 - a) = cos(2π/3)cos(a) + sin(2π/3)sin(a)
Now, let's use the values of cos(2π/3) and sin(2π/3).
cos(2π/3) = -1/2 sin(2π/3) = √3/2
So, our expression becomes:
(-1/2)cos(a) + (√3/2)sin(a) - cos(a + π/3)
Next, use the sum of angles identity for cosine:
cos(A + B) = cos(A)cos(B) - sin(A)sin(B)
In this case, A = a and B = π/3, so we have:
cos(a + π/3) = cos(a)cos(π/3) - sin(a)sin(π/3)
Now, let's use the values of cos(π/3) and sin(π/3).
cos(π/3) = 1/2 sin(π/3) = √3/2
So, our expression becomes:
(-1/2)cos(a) + (√3/2)sin(a) - (1/2)cos(a) - (√3/2)sin(a)
Now, simplify the expression:
(-1/2)cos(a) + (√3/2)sin(a) - (1/2)cos(a) - (√3/2)sin(a)
Now, you can see that (-1/2)cos(a) and (-1/2)cos(a) cancel each other out, and (√3/2)sin(a) and - (√3/2)sin(a) also cancel each other out. So, the expression simplifies to:
0
So, the simplified expression is 0.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili