Cos(2П/3-a)-cos(a+П/3)
Ответы на вопрос
        
            To simplify the expression cos(2π/3 - a) - cos(a + π/3), you can use trigonometric identities.
First, let's use the difference of angles identity for cosine:
cos(A - B) = cos(A)cos(B) + sin(A)sin(B)
In this case, let A = 2π/3 and B = a, so we have:
cos(2π/3 - a) = cos(2π/3)cos(a) + sin(2π/3)sin(a)
Now, let's use the values of cos(2π/3) and sin(2π/3).
cos(2π/3) = -1/2 sin(2π/3) = √3/2
So, our expression becomes:
(-1/2)cos(a) + (√3/2)sin(a) - cos(a + π/3)
Next, use the sum of angles identity for cosine:
cos(A + B) = cos(A)cos(B) - sin(A)sin(B)
In this case, A = a and B = π/3, so we have:
cos(a + π/3) = cos(a)cos(π/3) - sin(a)sin(π/3)
Now, let's use the values of cos(π/3) and sin(π/3).
cos(π/3) = 1/2 sin(π/3) = √3/2
So, our expression becomes:
(-1/2)cos(a) + (√3/2)sin(a) - (1/2)cos(a) - (√3/2)sin(a)
Now, simplify the expression:
(-1/2)cos(a) + (√3/2)sin(a) - (1/2)cos(a) - (√3/2)sin(a)
Now, you can see that (-1/2)cos(a) and (-1/2)cos(a) cancel each other out, and (√3/2)sin(a) and - (√3/2)sin(a) also cancel each other out. So, the expression simplifies to:
0
So, the simplified expression is 0.
Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
- 
			
Математика
 - 
			
Литература
 - 
			
Алгебра
 - 
			
Русский язык
 - 
			
Геометрия
 - 
			
Английский язык
 - 
			
Химия
 - 
			
Физика
 - 
			
Биология
 - 
			
Другие предметы
 - 
			
История
 - 
			
Обществознание
 - 
			
Окружающий мир
 - 
			
География
 - 
			
Українська мова
 - 
			
Информатика
 - 
			
Українська література
 - 
			
Қазақ тiлi
 - 
			
Экономика
 - 
			
Музыка
 - 
			
Право
 - 
			
Беларуская мова
 - 
			
Французский язык
 - 
			
Немецкий язык
 - 
			
МХК
 - 
			
ОБЖ
 - 
			
Психология
 - 
			
Физкультура и спорт
 - 
			
Астрономия
 - 
			
Кыргыз тили
 - 
			
Оʻzbek tili
 
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			