
Найти: sinx-cosx,если sin2x=0,96, х=(0;3,14/4)


Ответы на вопрос





Для нахождения значения выражения sin(x) - cos(x) при условии sin(2x) = 0.96 и x в диапазоне от 0 до π/4 (0;3.14/4), мы сначала найдем значение sin(x) и cos(x) в этом диапазоне и затем вычтем их.
Известно, что sin(2x) = 0.96. Мы можем воспользоваться формулой двойного угла для синуса:
sin(2x) = 2sin(x)cos(x)
Из этого уравнения мы можем выразить sin(x)cos(x):
sin(x)cos(x) = sin(2x) / 2 = 0.96 / 2 = 0.48
Теперь мы знаем, что sin(x)cos(x) равно 0.48. Теперь мы можем использовать исходное выражение sin(x) - cos(x) и выразить его через sin(x) и cos(x):
sin(x) - cos(x) = √2(sin(x) - cos(x)) / √2
Теперь воспользуемся формулой сложения для синуса и косинуса:
sin(x) - cos(x) = √2(sin(x)cos(π/4) - cos(x)sin(π/4))
Здесь sin(π/4) = cos(π/4) = 1/√2. Теперь подставим sin(x)cos(x) = 0.48 и значения sin(π/4) и cos(π/4):
sin(x) - cos(x) = √2(0.48 - 1/√2)
Теперь вычислим значение этого выражения:
sin(x) - cos(x) = √2(0.48 - 1/√2) ≈ 0.678 - 1 ≈ -0.322
Итак, sin(x) - cos(x) при sin(2x) = 0.96 и x в диапазоне от 0 до π/4 примерно равно -0.322.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili