
(x - 3)(4 - 2x) >= 0


Ответы на вопрос

Ответ:
....................
......




To solve the inequality , we'll follow these steps:
- Find the critical points by setting each factor equal to zero and solving for .
- Create intervals using these critical points.
- Test points within each interval to determine the sign of the expression.
- Determine the intervals that satisfy the inequality.
Let's go through it step by step:
Find the critical points:
gives .
gives .
Create intervals:
These critical points divide the number line into three intervals: , , and .
Test points within each interval:
For the interval , we can choose a test point, say . Plug it into the original inequality: which simplifies to . This is false.
For the interval , we can choose a test point, say . Plug it into the original inequality: which simplifies to . This is true.
For the interval , we can choose a test point, say . Plug it into the original inequality: which simplifies to . This is false.
Determine the intervals that satisfy the inequality:
The solution to the inequality is belonging to the interval , or in interval notation: .
Please note that the inequality is not strict (greater than), so the endpoints and are not included in the solution set.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili