
(x+3)(x+7)+1≤(2x-3)²-8(x-5)


Ответы на вопрос

(x+3)(x+7) + 1 ≤ (2x-3)² - 8(x-5)
x² + 10x + 21 + 1 ≤ 4x² - 12x + 9 - 8x + 40
x² + 10x + 22 ≤ 4x² - 20x + 49
0 ≤ 3x² - 30x + 27
3x² - 30x + 27 ≥ 0
x² - 10x + 9 ≥ 0
(x - 1)(x - 9) ≥ 0
x ≤ 1 или x ≥ 9
(-∞, 1]∪[9, +∞).



To solve the inequality , follow these steps:
Expand both sides of the inequality:
Expand the left side:
Expand the right side:
Simplify the inequality: Now, we have the inequality in the following form:
Rearrange the inequality by moving all terms to one side to set the inequality to zero:
Combine like terms:
Divide the entire inequality by -3 to make the leading coefficient of the quadratic term positive, which will help in factoring:
Factor the quadratic expression:
Find the critical points by setting each factor equal to zero and solving for x: => =>
Create a sign chart to determine the sign of the expression between and outside the critical points:
\hline \text{Interval} & (x-9) & (x-1) & (x-9)(x-1) & \text{Sign of }(x-9)(x-1) \\ \hline (-\infty, 1) & - & - & + & + \\ (1, 9) & - & + & - & - \\ (9, \infty) & + & + & + & + \\ \hline \end{array} \]Now, analyze the sign chart. The inequality is satisfied when , which means when the sign of the expression is either positive or zero. From the sign chart, this occurs in two intervals:
So, the solution to the inequality is: or
This is the solution to the given inequality.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili