Tg(-x)=1
Ответы на вопрос
To solve the equation Tg(-x) = 1, you'll want to find the values of x that satisfy this equation. "Tg" is typically used to represent the tangent function, often denoted as "tan" or "tg." The tangent function takes an angle as its input and returns the ratio of the length of the side opposite the angle to the length of the side adjacent to the angle in a right triangle.
So, to solve Tg(-x) = 1, you can first determine the angle for which the tangent is equal to 1. In trigonometry, the tangent of 45 degrees or π/4 radians is equal to 1. Therefore, you can write:
Tg(-x) = 1
Now, set -x equal to 45 degrees (π/4 radians) or any multiple of it to find the solutions:
-x = 45° + n * 180°, where n is an integer
For the radians version:
-x = π/4 + n * π, where n is an integer
Now, you can solve for x:
x = -45° - n * 180°, where n is an integer
Or in radians:
x = -π/4 - n * π, where n is an integer
These equations provide the general solutions for x that satisfy Tg(-x) = 1. The "n" in the equations represents any integer, and it can be positive, negative, or zero to generate multiple solutions.
Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
