
Образующая конуса 8см и образует с плоскостью основания угол в 60 градусах . Найдите площадь
основания.

Ответы на вопрос

Ответ:
50,24
Объяснение:
S= пr^2. r=l/2=8/2=4. S=16n=16*3,14=50,24



Для решения этой задачи мы можем использовать свойство синуса угла между образующей конуса и плоскостью основания. В данном случае, у нас есть следующие данные:
Длина образующей конуса (l) = 8 см Угол между образующей и плоскостью основания (θ) = 60 градусов
Площадь основания конуса (S) можно найти с помощью следующей формулы:
S = π * r^2,
где r - радиус основания конуса.
Сначала найдем радиус основания конуса. Для этого воспользуемся свойством синуса:
sin(θ) = r / l,
где θ - угол между образующей и плоскостью основания, r - радиус основания конуса, l - длина образующей конуса.
Подставим известные значения:
sin(60°) = r / 8.
sin(60°) равно √3 / 2, поэтому:
√3 / 2 = r / 8.
Теперь найдем значение радиуса r:
r = (√3 / 2) * 8, r = 4√3.
Теперь, когда у нас есть радиус основания конуса, мы можем найти его площадь:
S = π * (4√3)^2, S = π * 48, S ≈ 150.8 см².
Ответ: Площадь основания конуса составляет приблизительно 150.8 квадратных сантиметров.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili