
2log2 (log2 x) + log0,5 ( log2 x) = 1


Ответы на вопрос

Ответ:
x=4
Объяснение:
2log2 (log2 x) + log0,5 ( log2 x) = 1
x E ( 1, +бесконечности)
2log2(log2x) -log2(log2x)=1
log2(log2x)=1
log2x=2
x=2^2
x=4



To solve the equation 2log2(log2(x)) + log0.5(log2(x)) = 1, we'll use some logarithmic properties and algebraic manipulation. First, let's simplify the equation:
Rewrite log0.5 as log2(0.5): 2log2(log2(x)) + log2(0.5 * log2(x)) = 1
Use the properties of logarithms to simplify further: log2(2^(2log2(log2(x))) * 0.5 * log2(x)) = 1
Combine the logarithmic expressions inside the logarithm: log2(2^(2log2(log2(x)) - 1) * log2(x)) = 1
Use the fact that log2(a^b) = b * log2(a): 2log2(log2(x)) - 1 + log2(x) = 1
Move the constant term to the right side of the equation: 2log2(log2(x)) + log2(x) = 1 + 1
Combine the constants on the right side: 2log2(log2(x)) + log2(x) = 2
Now, we can use a substitution to simplify further. Let u = log2(x):
2log2(u) + u = 2
- This is a quadratic equation in terms of u. Rearrange it:
2log2(u) + u - 2 = 0
- We can solve this quadratic equation. Let's use substitution again to simplify it further. Let v = log2(u):
2v + v - 2 = 0
Combine like terms: 3v - 2 = 0
Add 2 to both sides: 3v = 2
Divide by 3: v = 2/3
Now, we need to find u: v = log2(u)
2/3 = log2(u)
Convert to exponential form: u = 2^(2/3)
Finally, find x by reversing the initial substitution: x = 2^u = 2^(2/3)
So, the solution to the equation is x = 2^(2/3).


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili