
Лодка прошла 3 ч по течению реки и 7 ч против течения, проплыв за всё это время 62 км. Скорость
течения реки 2 км/ч. Найдите собственную скорость лодки. Решите задачу методом составления уравнения. Заранее спасибо!!!

Ответы на вопрос

3*(x+2)+7(x-2)=62
3x+6+7x-14=62
10x-8=62
10x=62+8
10x=70
x=70:10
x=7км/ч собственная скорость лодки.



Problem Analysis
We are given that a boat traveled downstream for 3 hours and upstream for 7 hours, covering a total distance of 62 km. The speed of the river's current is 2 km/h. We need to find the speed of the boat.Let's assume the speed of the boat in still water is x km/h.
Downstream Journey
During the downstream journey, the boat's speed is increased by the speed of the river's current. So, the effective speed of the boat is (x + 2) km/h.The time taken for the downstream journey is 3 hours, and the distance covered is 62 km. We can use the formula distance = speed × time to write the equation:
(x + 2) × 3 = 62
Upstream Journey
During the upstream journey, the boat's speed is decreased by the speed of the river's current. So, the effective speed of the boat is (x - 2) km/h.The time taken for the upstream journey is 7 hours, and the distance covered is 62 km. We can use the same formula to write the equation:
(x - 2) × 7 = 62
Solving the Equations
Now, we have two equations with two unknowns. We can solve these equations simultaneously to find the value of x, which represents the speed of the boat in still water.Let's solve the equations:
(x + 2) × 3 = 62
(x - 2) × 7 = 62
Expanding the equations:
3x + 6 = 62
7x - 14 = 62
Simplifying the equations:
3x = 56
7x = 76
Solving for x:
x = 56/3 ≈ 18.67
Answer
The speed of the boat in still water is approximately 18.67 km/h.Verification
Let's verify our answer using the given information.During the downstream journey, the boat's speed is (18.67 + 2) ≈ 20.67 km/h. The time taken is 3 hours, so the distance covered is 20.67 × 3 = 62 km.
During the upstream journey, the boat's speed is (18.67 - 2) ≈ 16.67 km/h. The time taken is 7 hours, so the distance covered is 16.67 × 7 = 116.69 km.
The total distance covered is 62 km + 116.69 km = 178.69 km, which matches the given information.
Therefore, our answer is verified.
Conclusion
The speed of the boat in still water is approximately 18.67 km/h.

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili