
11.1 2) x4 – 8x2 - 9 = 0; – 0 4) 16x4 - 409x2 + 225 = 0.


Ответы на вопрос

Ответ:
0
0

It seems like you have two quadratic equations that need to be solved. Let's solve each of them separately:
- x^4 - 8x^2 - 9 = 0
To solve this equation, we can make a substitution to simplify it. Let u = x^2, then the equation becomes:
u^2 - 8u - 9 = 0
Now, we can solve this quadratic equation for u:
(u - 9)(u + 1) = 0
Setting each factor equal to zero:
u - 9 = 0 or u + 1 = 0
Solving for u:
u = 9 or u = -1
Now, we need to back-substitute to find the values of x:
For u = 9: x^2 = 9 x = ±√9 x = ±3
For u = -1: x^2 = -1 This has no real solutions because the square of a real number is always non-negative.
So, the solutions to the equation x^4 - 8x^2 - 9 = 0 are x = 3 and x = -3.
- 16x^4 - 409x^2 + 225 = 0
This is also a quadratic equation in terms of x^2. Let u = x^2, then the equation becomes:
16u^2 - 409u + 225 = 0
Now, we can solve this quadratic equation for u. You can use the quadratic formula:
u = (-b ± √(b^2 - 4ac)) / (2a)
In this case, a = 16, b = -409, and c = 225. Plugging in these values:
u = (409 ± √((-409)^2 - 4 * 16 * 225)) / (2 * 16)
Calculate the discriminant:
D = (-409)^2 - 4 * 16 * 225 = 16641 - 14400 = 2241
Now, plug D back into the quadratic formula:
u = (409 ± √2241) / 32
u ≈ (409 ± 47.35) / 32
So, there are two possible values for u:
- u ≈ (409 + 47.35) / 32 ≈ 14.16
- u ≈ (409 - 47.35) / 32 ≈ 11.19
Now, we need to back-substitute to find the values of x:
For u ≈ 14.16: x^2 ≈ 14.16 x ≈ ±√14.16 x ≈ ±3.76
For u ≈ 11.19: x^2 ≈ 11.19 x ≈ ±√11.19 x ≈ ±3.35
So, the solutions to the equation 16x^4 - 409x^2 + 225 = 0 are x ≈ 3.76, x ≈ -3.76, x ≈ 3.35, and x ≈ -3.35.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili