Вопрос задан 27.09.2023 в 06:59. Предмет Алгебра. Спрашивает Курманбаева Айгерим.

•2. Периметр прямоугольника равен 22 см, его площадь 24 см2. Найдите длины сторон прямоугольника.​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Брагар Рома.

В таком случае, площадь прямоугольника будет равна: 24 = a * b. Если разделить периметр на 2, то сумма сторон прямоугольника составит: (a + b) = 22 / 2 = 11 см. Раскладываем площадь прямоугольника на целые числа, произведение которых дает 24 квадратных сантиметра. Получим: 24 = 6 * 4. (Не подходит, поскольку в сумме стороны дают 10 сантиметров.) 24 = 8 * 3. (Подходит. поскольку в сумме получим 11 сантиметров). Ответ: 8 и 3 см.

0 0
Отвечает Кривощекова Анастасия.

Объяснение:

Дано

Р=22 см

S=24 см²

Найти

a=?

b=?

Решение

Р= 2×( a+b)

S= a×b

{2×(а+b)= 22

{a×b=24

{a=11-b

{(11-b)×b=24

11b-b²-24=0

b²-11b+24=0

b²-3b-8b+24=0

b(b-3)-8(b-3)=0

(b-3)(b-8)=0

b-3=0

b=3 см

b-8=0

b=8 см

a=11-3=8 см

a=11-8=3 см

Ответ: длины сторон прямоугольника равны 3 см и 8 см. или 8 см и 3 см.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения длин сторон прямоугольника, когда известен его периметр и площадь, мы можем воспользоваться системой уравнений.

Пусть a и b - длины сторон прямоугольника. Тогда периметр прямоугольника равен:

P = 2a + 2b = 22 см.

А площадь прямоугольника равна:

S = a * b = 24 см².

Теперь у нас есть система из двух уравнений:

  1. 2a + 2b = 22,
  2. a * b = 24.

Мы можем решить эту систему методом подстановки или методом выражения одной переменной через другую.

Давайте воспользуемся методом выражения одной переменной через другую из первого уравнения:

2a + 2b = 22.

Разделим оба выражения на 2:

a + b = 11.

Теперь выразим, например, переменную 'a' через 'b':

a = 11 - b.

Теперь подставим это выражение во второе уравнение:

(11 - b) * b = 24.

Распределим множители:

11b - b² = 24.

Переносим все элементы на одну сторону уравнения:

b² - 11b + 24 = 0.

Теперь мы получили квадратное уравнение. Давайте решим его с помощью формулы дискриминанта:

D = (-11)² - 4 * 1 * 24 = 121 - 96 = 25.

Теперь найдем два возможных значения 'b':

b₁ = (-(-11) + √25) / (2 * 1) = (11 + 5) / 2 = 16 / 2 = 8, b₂ = (-(-11) - √25) / (2 * 1) = (11 - 5) / 2 = 6 / 2 = 3.

Теперь найдем соответствующие значения 'a' для каждого из 'b' с помощью уравнения a = 11 - b:

a₁ = 11 - 8 = 3, a₂ = 11 - 3 = 8.

Итак, у нас есть два набора значений длин сторон прямоугольника: (a₁, b₁) = (3 см, 8 см) и (a₂, b₂) = (8 см, 3 см).

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос