
Синус одного з гострих кутів прямокутного трикутника = ¼. Знайдіть косинус та тангенс даного кута


Ответы на вопрос

Нехай гострий кут прямокутного трикутника має синус, рівний 1/4. За визначенням синусу, це означає, що протилежний катет цього кута становить 1/4 від гіпотенузи.
Давайте позначимо гіпотенузу трикутника як h і протилежний катет як a. Тоді за теоремою Піфагора, другий катет має довжину b = sqrt(h^2 - a^2).
За даними задачі, a/h = 1/4, тому a = h/4. Підставляючи це вираз у формулу для b, отримуємо b = sqrt(h^2 - (h/4)^2) = sqrt(15/16) * h.
Тепер ми можемо обчислити косинус та тангенс даного кута. Косинус цього кута буде дорівнювати прилеглому катету поділеному на гіпотенузу, тобто cos(theta) = b/h = sqrt(15)/4 ≈ 0.9682.
Тангенс цього кута буде дорівнювати протилежному катету поділеному на прилеглий катет, тобто tan(theta) = a/b = 1/sqrt(15) ≈ 0.2582.
Отже, косинус кута дорівнює близько 0.9682, а тангенс дорівнює близько 0.2582.



Для знаходження косинуса і тангенса гострого кута прямокутного трикутника, з відомим значенням синуса цього кута (sin(α) = 1/4), використовують основні тригонометричні відношення.
- Косинус кута (cosine, cos(α)) обчислюється за формулою: cos(α) = √(1 - sin^2(α))
Підставим дане значення синуса (sin(α) = 1/4) в формулу для косинуса: cos(α) = √(1 - (1/4)^2) cos(α) = √(1 - 1/16) cos(α) = √(15/16) cos(α) = √15 / 4
- Тангенс кута (tangent, tan(α)) обчислюється як відношення синуса до косинуса: tan(α) = sin(α) / cos(α)
Підставим значення синуса та косинуса в формулу для тангенса: tan(α) = (1/4) / (√15 / 4) tan(α) = 1 / √15
Отже, косинус кута α дорівнює √15 / 4, а тангенс кута α дорівнює 1 / √15.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili