To simplify the expression cos2x+cos2y−cos(x+y)cos(x−y), you can use some trigonometric identities. Here's how you can do it step by step:
- Start with the expression:
cos2x+cos2y−cos(x+y)cos(x−y)
Recall the trigonometric identity cos(2θ)=cos2θ−sin2θ.
Rewrite cos2x and cos2y using this identity:
cos2x=21(1+cos(2x))
cos2y=21(1+cos(2y))
- Substitute these expressions back into the original expression:
21(1+cos(2x))+21(1+cos(2y))−cos(x+y)cos(x−y)
- Now, let's work on the last term cos(x+y)cos(x−y). Use the trigonometric identity cos(A+B)cos(A−B)=21[cos(2A)+cos(2B)]:
cos(x+y)cos(x−y)=21[cos(2x)+cos(2y)]
- Substitute this back into the expression:
21(1+cos(2x))+21(1+cos(2y))−21[cos(2x)+cos(2y)]
- Now, combine like terms:
21+21−21cos(2x)+21−21cos(2y)−21[cos(2x)+cos(2y)]
- Simplify further:
21+21−21cos(2x)+21−21cos(2y)−21cos(2x)−21cos(2y)
- Combine like terms again:
1−21cos(2x)−21cos(2y)−21cos(2x)−21cos(2y)
- Combine the cos(2x) and cos(2y
0
0