
X^3+2x^2+3x+6=0 помогите решить


Ответы на вопрос

x^2 (x + 2) + 3(x + 2)= 0
(x + 2)* (x^2 + 3) = 0
x + 2 = 0 ==> x = - 2
x^2 + 3 = 0 ==> x^2 = - 3 ==> нет реш



Для решения кубического уравнения x^3 + 2x^2 + 3x + 6 = 0, мы можем воспользоваться различными методами, включая метод Кардано или метод численного приближения. В данном случае, мы воспользуемся методом численного приближения.
Начнем с выбора начального приближения для корня уравнения. Для этого можно воспользоваться графическим методом или методом деления отрезка пополам. Давайте попробуем начать с x = -2.
Теперь мы будем использовать метод итераций, чтобы улучшить приближение к корню. Формула итераций выглядит следующим образом:
x_new = x_old - f(x_old) / f'(x_old),
где x_new - новое приближение к корню, x_old - предыдущее приближение к корню, f(x) - данная функция (в нашем случае, f(x) = x^3 + 2x^2 + 3x + 6), f'(x) - производная функции f(x).
Начнем итерации, используя x = -2:
x_new = -2 - (-2^3 + 2*(-2)^2 + 3*(-2) + 6) / (3*(-2)^2 + 4*(-2) + 3) ≈ -2 - (-8 - 8 - 6 + 6) / (12 - 8 + 3) ≈ -2 + 8 / 7 ≈ -2 + 1.1429 ≈ -0.8571.
Теперь используем x_new как новое приближение и повторим шаг 3:
x_new = -0.8571 - (-0.8571^3 + 2*(-0.8571)^2 + 3*(-0.8571) + 6) / (3*(-0.8571)^2 + 4*(-0.8571) + 3)
Продолжайте выполнять эти итерации до тех пор, пока значение x_new не стабилизируется (то есть, не перестанет значительно изменяться). Полученное значение x будет приближенным корнем уравнения.
Пожалуйста, выполните несколько итераций и вы получите более точное приближенное значение корня этого уравнения.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili