Вопрос задан 21.08.2023 в 19:52. Предмет Алгебра. Спрашивает Танасійчук Адріан.

5x-3y=4 5y-9x=-8 Помогите

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Рассказова Марина.
Держи
________________

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Конечно, я готов помочь! У вас есть система уравнений:

  1. 5x3y=45x - 3y = 4
  2. 5y9x=85y - 9x = -8

Давайте решим эту систему уравнений. Есть несколько способов сделать это, но я воспользуюсь методом подстановки.

Сначала давайте решим первое уравнение относительно xx:

5x=3y+45x = 3y + 4 x=3y+45x = \frac{3y + 4}{5}

Теперь подставим это значение xx во второе уравнение:

5y9x=85y - 9x = -8 5y93y+45=85y - 9 \cdot \frac{3y + 4}{5} = -8

Раскроем скобки:

5y27y5365=85y - \frac{27y}{5} - \frac{36}{5} = -8

Упростим:

18y5=285\frac{18y}{5} = \frac{28}{5}

Теперь избавимся от дроби, умножив обе стороны на 518\frac{5}{18}:

y=2818y = \frac{28}{18} y=149y = \frac{14}{9}

Теперь, когда мы знаем yy, можем подставить его обратно в уравнение для xx:

x=3y+45x = \frac{3y + 4}{5} x=3149+45x = \frac{3 \cdot \frac{14}{9} + 4}{5} x=4245+205x = \frac{42}{45} + \frac{20}{5} x=1415+4x = \frac{14}{15} + 4 x=7415x = \frac{74}{15}

Итак, решение системы уравнений:

x=7415x = \frac{74}{15} y=149y = \frac{14}{9}

Если у вас есть еще вопросы, пожалуйста, дайте знать!

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос