
16sinx-sin2x=1-cos2x


Ответы на вопрос

sin2x=2sinx*cosx
cos2x =(cosx)^2 - (sinx)^2
1 = (cosx)^2 + (sinx)^2
Решение:
16sinx-sin2x=1-cos2x
16sinx-2sinx*cosx=(cosx)^2 + (sinx)^2 - ((cosx)^2 - (sinx)^2)
16sinx-2sinx*cosx=(cosx)^2 + (sinx)^2 - (cosx)^2 + (sinx)^2
16sinx-2sinx*cosx=2 (sinx)^2
8sinx-sinx*cosx - (sinx)^2 =0
sinx*(8-cosx - sinx) =0
sinx = 0 или 8-cosx - sinx =0
sinx = 0
х = Пn, где n - целое число.
8-cosx - sinx =0
cosx + sinx =8 |
cosx*sin(П/4) + sinx* cos(П/4) =
sin(П/4+x) =
Данное уравнение НЕ имеет решений, Т.к. sin x не может быть больше 1
Ответ: х = Пn, где n - целое число.



To solve the trigonometric equation 16sinx - sin2x = 1 - cos2x, we'll need to use trigonometric identities to simplify the equation and find the value(s) of x that satisfy it.
Let's start by using the trigonometric identities:
- sin2x = 2sinx*cosx
- cos2x = 1 - 2sin^2x
- 1 - cos2x = sin^2x
Now, let's substitute these identities into the original equation:
16sinx - 2sinx*cosx = sin^2x
To make it easier, we can bring everything to one side of the equation:
16sinx - 2sinx*cosx - sin^2x = 0
Now, the equation is in a quadratic form. We can factor it:
sinx(16 - 2cosx - sinx) = 0
Now, we have two possibilities to satisfy the equation:
- sinx = 0
- 16 - 2cosx - sinx = 0
Let's solve each possibility separately:
sinx = 0 If sinx = 0, this means x can be any integer multiple of π (pi). So, x = nπ, where n is an integer.
16 - 2cosx - sinx = 0 Rearrange the equation: sinx = 16 - 2cosx
Now, use the Pythagorean identity sin^2x + cos^2x = 1: (16 - 2cosx)^2 + cos^2x = 1
Simplify and solve for cosx: 256 - 64cosx + 4cos^2x + cos^2x = 1 5cos^2x - 64cosx + 255 = 0
Now, solve this quadratic equation for cosx:
cosx = [64 ± √(64^2 - 45255)] / (2*5) cosx = [64 ± √(4096 - 5100)] / 10 cosx = [64 ± √(-1004)] / 10
Since the square root of a negative number is not a real number, there are no real solutions for cosx. Therefore, the second possibility does not provide real solutions for x.
In conclusion, the solutions to the original trigonometric equation are:
- x = nπ, where n is an integer. (Infinite solutions)
- There are no real solutions for the equation 16sinx - sin2x = 1 - cos2x when considering real values of x.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili