Вопрос задан 31.07.2023 в 01:05. Предмет Алгебра. Спрашивает Симоненко Влад.

A) Sin(x+π/5)=√2/2 б) cos(3x-π/6)=-1

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Маумышев Тамерлан.
А)

sin(x+ \frac{ \pi }{5} )= \frac{ \sqrt{2} }{2}

x+ \frac{ \pi }{5}= (-1)^narcsin\frac{ \sqrt{2} }{2} + \pi n,  n ∈  Z

x+ \frac{ \pi }{5}= (-1)^n{ \frac{ \pi }{4}  + \pi n,  n ∈  Z

x= (-1)^n{ \frac{ \pi }{4} - \frac{ \pi }{5} + \pi n,  n ∈  Z

б)

cos(3x- \frac{ \pi }{6} )=-1

3x- \frac{ \pi }{6}= \pi +2 \pi n,  n ∈  Z

3x= \pi +\frac{ \pi }{6}+2 \pi n,  n ∈  Z

3x=\frac{ 7\pi }{6}+2 \pi n,  n ∈  Z

x=\frac{ 7\pi }{18}+ \frac{2 \pi n}{3} ,  n ∈  Z
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve the given trigonometric equations, we'll find the values of 'x' that satisfy each equation. Let's solve them one by one:

a) Sin(x + π/5) = √2/2

First, we'll find the general solution for the equation by isolating 'x' on one side of the equation:

sin(x + π/5) = √2/2

To find the general solution for sin(theta) = √2/2, we look at the unit circle. The sine function is positive in the first and second quadrants when the angle is π/4 or 3π/4:

sin(π/4) = √2/2 sin(3π/4) = √2/2

Now, to find the general solution for 'x':

x + π/5 = π/4 + 2πn or x + π/5 = 3π/4 + 2πn

where 'n' is an integer representing the number of full circles we go around the unit circle.

Now, let's solve for 'x':

For the first case (π/4 + 2πn):

x = π/4 - π/5 + 2πn x = (5π - 4π)/(20) + 2πn x = π/20 + 2πn

For the second case (3π/4 + 2πn):

x = 3π/4 - π/5 + 2πn x = (15π - 4π)/(20) + 2πn x = 11π/20 + 2πn

So, the general solutions for the equation sin(x + π/5) = √2/2 are:

x = π/20 + 2πn or x = 11π/20 + 2πn

where 'n' is an integer.

b) cos(3x - π/6) = -1

Again, let's find the general solution for the equation:

cos(3x - π/6) = -1

To find the general solution for cos(theta) = -1, we look at the unit circle. The cosine function is equal to -1 when the angle is π:

cos(π) = -1

Now, to find the general solution for 'x':

3x - π/6 = π + 2πn

where 'n' is an integer representing the number of full circles we go around the unit circle.

Now, let's solve for 'x':

3x = π + π/6 + 2πn x = (π + π/6 + 2πn) / 3 x = (6π + π + 12πn) / 18 x = (7π + 12πn) / 18 x = (7π/18) + (2πn/3)

So, the general solution for the equation cos(3x - π/6) = -1 is:

x = (7π/18) + (2πn/3)

where 'n' is an integer.

Remember, these solutions represent all possible values of 'x' that satisfy the given trigonometric equations. If you need a specific range for 'x' or numerical values, you can substitute different values of 'n' into the general solutions to get specific solutions for 'x'.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос