
(1/2)^x+1+(1/2)^x-2+(1/2)^x+3=37 Решите уравнение


Ответы на вопрос





To solve the equation (1/2)^x+1 + (1/2)^x-2 + (1/2)^x+3 = 37, we can simplify the terms first.
Notice that each term on the left side of the equation contains (1/2)^x, so we can factor it out:
(1/2)^x+1 + (1/2)^x-2 + (1/2)^x+3 = (1/2)^x * ((1/2)^1 + (1/2)^(-2) + (1/2)^3) = (1/2)^x * (1/2 + 1/4 + 1/8).
Now, let's add the fractions inside the parentheses:
(1/2)^x * (1/2 + 1/4 + 1/8) = (1/2)^x * (4/8 + 2/8 + 1/8) = (1/2)^x * (7/8).
So now, our equation becomes:
(1/2)^x * (7/8) = 37.
To solve for x, we need to isolate (1/2)^x on one side of the equation. To do that, we'll multiply both sides by 8/7:
(8/7) * (1/2)^x * (7/8) = (8/7) * 37.
The (7/8) on the left side cancels out:
(8/7) * (1/2)^x = (8/7) * 37.
Now, we'll cancel out the 8/7 on both sides by multiplying each side by 7/8:
(7/8) * (8/7) * (1/2)^x = (7/8) * (8/7) * 37.
The (8/7) on the left side cancels out:
(1/2)^x = 37.
Finally, to solve for x, take the logarithm of both sides. The base of the logarithm doesn't matter, but let's use the natural logarithm (ln) for this example:
ln((1/2)^x) = ln(37).
Now, we can use the property of logarithms to bring down the exponent:
x * ln(1/2) = ln(37).
Now, solve for x:
x = ln(37) / ln(1/2).
Using a calculator:
x ≈ 5.209.
So, the solution to the equation is approximately x = 5.209.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili