
Cos(36 +a)cos(54+a)-sin(36+a)sin(54+a)


Ответы на вопрос




To simplify the expression, we'll use the trigonometric identities for the sum of angles:
Cosine of the sum of two angles: cos(x + y) = cos(x)cos(y) - sin(x)sin(y)
Sine of the sum of two angles: sin(x + y) = sin(x)cos(y) + cos(x)sin(y)
Let's apply these identities to the given expression:
cos(36 + a)cos(54 + a) - sin(36 + a)sin(54 + a)
Using the cosine of the sum of angles identity, we get:
= [cos(36)cos(a) - sin(36)sin(a)][cos(54)cos(a) - sin(54)sin(a)]
Now, using the sine of the sum of angles identity, we get:
= [(cos(36)cos(a))(cos(54)cos(a)) - (sin(36)sin(a))(cos(54)cos(a))]
- [(cos(36)cos(a))(sin(54)sin(a)) + (sin(36)sin(a))(sin(54)sin(a))]
Now, let's simplify each term:
= [cos(36)cos(54)cos^2(a) - sin(36)sin(54)cos^2(a)]
- [cos(36)cos(54)sin^2(a) + sin(36)sin(54)sin^2(a)]
Since cos^2(a) + sin^2(a) = 1, we can rewrite the expression:
= cos(36)cos(54) - sin(36)sin(54)
Now, you might recognize this as the cosine of the difference of two angles identity:
cos(x - y) = cos(x)cos(y) + sin(x)sin(y)
Thus:
cos(36 - 54) = cos(-18)
Finally, the value of cos(-18) can be calculated using standard trigonometric values:
cos(-18) = cos(18) = 0.9510565163 (approx)
So the simplified expression is approximately 0.9510565163.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili