
(x^2+2x)(2x+2)-9*(2x+2)/(x^2-2)≥0


Ответы на вопрос

x^2-9=(x-3)*(x+3). x не должен равняться (-3) и 3 (при этих значениях знаменатель обращается в 0 и выражение не имеет смысла). получаем: x^2=12-x; x^2+x-12=0; D=1^2-4*1*(-12)=1+48=49; x1=(-1-7)/2, x2=(-1+7)/2. x1= -4, x2=3. Ответ: x= -4.



To solve the inequality , we need to find the values of that satisfy the inequality. To do that, let's follow these steps:
Step 1: Factorize the expressions. Step 2: Determine the domain of the inequality. Step 3: Find the critical points (points where the expression is equal to zero or undefined). Step 4: Test intervals and determine the sign of the expression. Step 5: State the solution to the inequality.
Let's start with step 1:
Step 1: Factorize the expressions. Factorizing the first expression:
Factorizing the second expression:
Now the inequality becomes:
Step 2: Determine the domain of the inequality. The inequality is defined for all real values of except for the points where the denominator becomes zero. So, the domain is .
Step 3: Find the critical points. The critical points are the values of that make the expression zero or undefined. In this case, the critical point is , where both terms of the expression become zero.
Step 4: Test intervals and determine the sign of the expression. Let's test three intervals: , , and .
Test :
Test :
Test :
Test :