Вопрос задан 28.07.2023 в 12:26. Предмет Алгебра. Спрашивает Ляс Артем.

5*​15^​(x)-​3*​5^​(x+​1)-​3^(​x)+​3

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Бубырь Алина.

></p>              <br>              <p>Ответ: <img src=

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To simplify the expression 515^x - 35^(x+1) - 3^x + 3, let's break it down step by step:

Step 1: Simplify the powers of 5 and 3.

  • 15 can be written as 3 * 5.
  • 5^(x+1) can be written as 5^x * 5.
  • 3^x remains unchanged.

Step 2: Substitute the simplified forms into the expression.

515^x - 35^(x+1) - 3^x + 3 = 5 * (3 * 5)^x - 3 * (5^x * 5) - 3^x + 3

Step 3: Use the property (a * b)^c = a^c * b^c to further simplify.

= 5 * 3^x * 5^x - 3 * 5^x * 5 - 3^x + 3

Step 4: Group like terms and combine them.

= 5^x * 3^x - 15 * 5^x - 3^x + 3

Step 5: Factor out common terms.

= (5^x * 3^x - 3^x) - 15 * 5^x + 3

Step 6: Factor out 3^x from the first two terms.

= 3^x * (5^x - 1) - 15 * 5^x + 3

Now the expression is simplified as much as possible. If you have specific values for x, you can substitute them into the expression to get the final result. Otherwise, this is the simplified form of the expression.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос