Вопрос задан 27.07.2023 в 11:14. Предмет Алгебра. Спрашивает Моргачёва Настя.

Y=-x^2+8-12 график фу

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Шашок Артём.

Парабола будет графиком функции


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To graph the function y=x2+8x12y = -x^2 + 8x - 12, we need to plot points on a coordinate plane and then connect them to form the graph. Here's how you can do it step-by-step:

Step 1: Find the vertex of the parabola. The vertex of the parabola represented by the equation y=ax2+bx+cy = ax^2 + bx + c is given by (h,k)(h, k), where h=b2ah = -\frac{b}{2a} and kk is the value of the function at x=hx = h.

For our equation y=x2+8x12y = -x^2 + 8x - 12: a=1a = -1, b=8b = 8, and c=12c = -12.

h=82(1)=4h = -\frac{8}{2(-1)} = 4 and k=(4)2+8(4)12=4k = -(4)^2 + 8(4) - 12 = -4.

So, the vertex is at (4,4)(4, -4).

Step 2: Find the yy-intercept. The yy-intercept is the value of the function when x=0x = 0. So, set x=0x = 0 in the equation and solve for yy.

y=(0)2+8(0)12=12y = -(0)^2 + 8(0) - 12 = -12.

So, the yy-intercept is at (0,12)(0, -12).

Step 3: Find the xx-intercepts. The xx-intercepts are the points where the graph crosses the xx-axis. To find these points, set y=0y = 0 in the equation and solve for xx.

0=x2+8x120 = -x^2 + 8x - 12.

To solve this quadratic equation, you can use factoring or the quadratic formula. In this case, it factors nicely:

0=(x28x+12)=(x2)(x6)0 = -(x^2 - 8x + 12) = -(x - 2)(x - 6).

Setting each factor to zero gives us two solutions:

x2=0    x=2x - 2 = 0 \implies x = 2 and x6=0    x=6x - 6 = 0 \implies x = 6.

So, the xx-intercepts are at (2,0)(2, 0) and (6,0)(6, 0).

Step 4: Plot the points. Now that we have the vertex and the intercepts, let's plot them on the coordinate plane:

  • Vertex: (4,4)(4, -4)
  • yy-intercept: (0,12)(0, -12)
  • xx-intercepts: (2,0)(2, 0) and (6,0)(6, 0)

Step 5: Draw the graph. Now, connect the plotted points to form the graph of the function. Since it's a downward-opening parabola, the graph will look like this:

yaml
| | | | | | | | | | | * | | * * | | * | | -----------------------

The graph is a downward-opening parabola with the vertex at (4,4)(4, -4), passing through the points (2,0)(2, 0) and (6,0)(6, 0), and intersecting the yy-axis at (0,12)(0, -12).

Please note that this is just a rough sketch; for a more accurate graph, you can plot more points or use graphing software.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос