Вопрос задан 24.07.2023 в 09:27. Предмет Алгебра. Спрашивает Гриценко Даша.

(х+1) (х^2-3х-4) (^ это степень)

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Красных Артём.
Решение находится на фотографии.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To simplify the expression, we need to multiply the two factors together:

Expression: (х + 1) * (х^2 - 3х - 4)

To do this, we use the distributive property, which states that (a + b) * c = a * c + b * c. Applying this to the given expression:

(х + 1) * (х^2 - 3х - 4) = х * (х^2 - 3х - 4) + 1 * (х^2 - 3х - 4)

Now, we'll perform the multiplications:

  1. х * (х^2 - 3х - 4) = х^3 - 3х^2 - 4х
  2. 1 * (х^2 - 3х - 4) = х^2 - 3х - 4

Putting it all together:

(х + 1) * (х^2 - 3х - 4) = х^3 - 3х^2 - 4х + х^2 - 3х - 4

Next, let's combine like terms:

Grouping the terms with the same power of x:

(х^3 + х^2) + (-3х^2 - 3х) + (-4х - 4)

Now, combine the terms within each group:

х^3 + (х^2 - 3х^2) + (-3х - 4х) - 4

Simplifying further:

х^3 - 2х^2 - 7х - 4

So, the simplified expression is: х^3 - 2х^2 - 7х - 4.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос