
(c- 6c-9/c):(3/c - 1)=


Ответы на вопрос

(с-6с-9/с):(3/с-1) =
= (-7с-9/с):(3/с-1) =
= (-7с*с-9/с*с):(3/с*с-1*с) =
= (-7с^2-9):(3-с)



(c- 6c-9/c):(3/c - 1)=(-5с-9/с):3-с/с= -5с2-9/с * с/3-с= (-5с2-9)*1/3-с=-5с2-9/3-с= -5с2+9/3-с



To simplify the given expression, let's follow the order of operations (PEMDAS/BODMAS):
- Parentheses/Brackets
- Exponents/Orders
- Multiplication and Division (from left to right)
- Addition and Subtraction (from left to right)
The given expression is:
(c - 6c - 9) / (3/c - 1)
Step 1: Combine like terms in the numerator (c - 6c - 9): = (-5c - 9) / (3/c - 1)
Step 2: To divide by a fraction, we can multiply by its reciprocal. So, let's find the reciprocal of (3/c - 1), which is (1 / (3/c - 1)): = (-5c - 9) * (1 / (3/c - 1))
Step 3: Now, let's simplify the fraction in the denominator:
3/c - 1 To get a common denominator, multiply the second term (1) by (c / c):
(3/c) - (c/c) = (3/c) - c/c = (3 - c) / c
So, the expression becomes:
(-5c - 9) * (1 / ((3 - c) / c))
Step 4: To divide by a fraction, we can multiply by its reciprocal. The reciprocal of ((3 - c) / c) is (c / (3 - c)):
= (-5c - 9) * (c / (3 - c))
Step 5: Now, let's distribute the multiplication:
= (-5c^2 - 9c) / (3 - c)
So, the simplified expression is:
(-5c^2 - 9c) / (3 - c)


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili