
1) x³ - 64x > 0 2) x³ ≤ 2x 3) x + ≤ 6 4) x + ≥ 3


Ответы на вопрос





Let's solve each inequality step by step:
- x³ - 64x > 0
To solve this inequality, first factor out x from the expression:
x(x² - 64) > 0
Now, factor the expression further:
x(x + 8)(x - 8) > 0
Next, find the critical points by setting each factor equal to zero:
x = 0, x + 8 = 0, x - 8 = 0
Solving for x:
x = 0, x = -8, x = 8
Now, we can use test intervals to determine the sign of the expression in each interval. Choose test points from each interval and evaluate the expression:
Test point: x = -10
(-10)(-10 + 8)(-10 - 8) = -10(-2)(-18) = 360
The expression is positive in this interval.
Test point: x = 5
(5)(5 + 8)(5 - 8) = 5(13)(-3) = -195
The expression is negative in this interval.
Test point: x = 10
(10)(10 + 8)(10 - 8) = 10(18)(2) = 360
The expression is positive in this interval.
Now, we can write the solution by considering where the expression is greater than zero:
Solution: x < -8 or 0 < x < 8
- x³ ≤ 2x
To solve this inequality, first, move all terms to one side of the inequality:
x³ - 2x ≤ 0
Next, factor out x:
x(x² - 2) ≤ 0
Now, find the critical points by setting each factor equal to zero:
x = 0, x² - 2 = 0
Solving for x:
x = 0, x = ±√2
Now, use test intervals to determine the sign of the expression in each interval:
Test point: x = -1
(-1)((-1)² - 2) = -1(1 - 2) = 1
The expression is positive in this interval.
Test point: x = 1.5
(1.5)((1.5)² - 2) = 1.5(1.25) = 1.875
The expression is positive in this interval.
Test point: x = 3
(3)((3)² - 2) = 3(7) = 21
The expression is positive in this interval.
Now, write the solution by considering where the expression is less than or equal to zero:
Solution: -√2 ≤ x ≤ 0
- x + 2 ≤ 6
To solve this inequality, first, move the constant term to the other side of the inequality:
x + 2 - 2 ≤ 6 - 2
Simplify:
x ≤ 4
Solution: x ≤ 4
- x + 1 ≥ 3
To solve this inequality, first, move the constant term to the other side of the inequality:
x + 1 - 1 ≥ 3 - 1
Simplify:
x ≥ 2
Solution: x ≥ 2
To summarize the solutions:
- x < -8 or 0 < x < 8
- -√2 ≤ x ≤ 0
- x ≤ 4
- x ≥ 2


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili