
Log1/3x>1 ; log1/3x<-1 ; log1/3x>-1 ; log1/3x<1


Ответы на вопрос

______________________________
удачи))




To solve the inequalities involving logarithms, we need to apply logarithmic rules and properties. Let's solve each inequality step by step:
- log(1/3)x > 1:
To solve this inequality, we can use the property of logarithms that states: If log_b(x) > y, then b^y < x.
In our case, we have: log(1/3)x > 1
Using the property mentioned above: 1/3^1 < x
Simplify: 1/3 < x
- log(1/3)x < -1:
Similarly, we'll use the property of logarithms: If log_b(x) < y, then b^y > x.
In our case, we have: log(1/3)x < -1
Using the property mentioned above: 1/3^(-1) > x
Simplify: 3 > x
- log(1/3)x > -1:
Applying the property: 1/3^(-1) < x
Simplify: 3 < x
- log(1/3)x < 1:
Using the property: 1/3^1 > x
Simplify: 1/3 > x
Summary of the solutions:
- x > 1/3
- x < 3
- x > 3
- x < 1/3
However, please note that when dealing with logarithmic inequalities, we need to ensure that the argument of the logarithm is positive. In this case, the argument of the logarithm (1/3)x should be greater than 0. So, we need to consider the valid interval for x as the intersection of the solutions to the inequalities and the domain of the logarithmic function, which is x > 0.
Therefore, the valid solution is:
1/3 < x < 3


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili