
Sin^2a/tg^2a + cos^2a/ctg^2a- 1/sin^2a=-ctg^2a


Ответы на вопрос

Тождество доказано



To prove the given trigonometric identity, we will manipulate the left-hand side (LHS) of the equation step by step:
LHS = sin^2(a)/tan^2(a) + cos^2(a)/cot^2(a) - 1/sin^2(a)
To simplify the expression, we'll use the trigonometric identity: cot^2(a) = 1/tan^2(a)
Substitute cot^2(a) in the second term:
LHS = sin^2(a)/tan^2(a) + cos^2(a)/(1/tan^2(a)) - 1/sin^2(a)
Now, to add the fractions in the first two terms, we need a common denominator. The common denominator for tan^2(a) and 1/tan^2(a) is tan^2(a):
LHS = (sin^2(a) + cos^2(a)*tan^2(a) - 1)/tan^2(a)
Now, remember the Pythagorean identity: sin^2(a) + cos^2(a) = 1
Substitute this into the expression:
LHS = (1*tan^2(a) - 1)/tan^2(a)
Now, simplify further:
LHS = (tan^2(a) - 1)/tan^2(a)
Next, we can use the identity: tan^2(a) = 1 + cot^2(a)
Substitute this into the expression:
LHS = [(1 + cot^2(a)) - 1]/(1 + cot^2(a))
Simplify:
LHS = cot^2(a)/ (1 + cot^2(a))
Now, recall the identity: cot^2(a) = 1/tan^2(a)
Substitute this back in:
LHS = (1/tan^2(a))/(1 + 1/tan^2(a))
LHS = 1/(tan^2(a) + 1/tan^2(a))
Now, recall the identity: tan^2(a) + 1/tan^2(a) = sec^2(a)
Substitute this into the expression:
LHS = 1/sec^2(a)
Finally, remember the definition of secant: sec(a) = 1/cos(a)
Substitute this in:
LHS = 1/(1/cos^2(a))
LHS = cos^2(a)
Thus, we have proved that:
LHS = cos^2(a) = -cot^2(a)
So, the given trigonometric identity is true.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili