
X^2+y^2=5. log(a)x+log(a)y=log(a)2


Ответы на вопрос





To solve the system of equations:
- x^2 + y^2 = 5
- log(a)x + log(a)y = log(a)2
Let's start by addressing the second equation. The logarithm property that will be useful in this case is:
log(a)mn = log(a)m + log(a)n
Using this property, we can rewrite the second equation as:
log(a)(xy) = log(a)2
Now, since both sides of the equation have the same base (logarithm base 'a'), we can drop the logarithm notation and write:
xy = 2
Now we have two equations:
- x^2 + y^2 = 5
- xy = 2
We can use substitution or elimination to solve this system. Let's use substitution. Solve equation 2 for x or y and substitute the value into equation 1.
From equation 2, we can express x in terms of y:
x = 2/y
Now substitute this value of x into equation 1:
(2/y)^2 + y^2 = 5
Simplify the equation:
4/y^2 + y^2 = 5
Multiply both sides by y^2 to get rid of the denominators:
4 + y^4 = 5y^2
Rearrange the equation to set it to zero:
y^4 - 5y^2 + 4 = 0
This is now a quadratic equation in terms of y^2. We can solve for y^2 using the quadratic formula:
y^2 = [5 ± sqrt(5^2 - 414)] / 2 y^2 = [5 ± sqrt(9)] / 2 y^2 = (5 ± 3) / 2
This gives two possible values for y^2:
- y^2 = (5 + 3) / 2 = 4
- y^2 = (5 - 3) / 2 = 1
Now, find the corresponding values of y by taking the square root of each y^2 value:
- y = sqrt(4) = 2
- y = sqrt(1) = 1
Now that we have two possible values for y (y = 2 and y = 1), we can find the corresponding values of x using equation 2:
For y = 2: x = 2/y = 2/2 = 1
For y = 1: x = 2/y = 2/1 = 2
So, the solutions to the system of equations are (x = 1, y = 2) and (x = 2, y = 1).


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili