Lg^2(x/10)+lg(10x)>2
Ответы на вопрос
Ответ:
Объяснение:
!!!!!!!!!!!!!!!!!!!!!!!!!!!


To solve the inequality lg^2(x/10) + lg(10x) > 2, let's break it down step-by-step.
First, let's rewrite the logarithms using common properties of logarithms:
- lg^2(x/10) = (lg(x/10))^2
- lg(10x) = lg(10) + lg(x) = 1 + lg(x) (since lg(10) = 1)
Now, our inequality becomes:
(lg(x/10))^2 + 1 + lg(x) > 2
Subtract 2 from both sides to move everything to the left side:
(lg(x/10))^2 + lg(x) - 1 > 0
Now, let u = lg(x/10), so we have:
u^2 + lg(10^u) - 1 > 0
The inequality now becomes:
u^2 + u - 1 > 0
Now, we need to find the solutions to this quadratic inequality. To do that, let's find the roots of the equation u^2 + u - 1 = 0:
Using the quadratic formula (or factoring), the roots are:
u = (-1 ± √5) / 2
Approximately, u ≈ 0.61803 and u ≈ -1.61803
Now, we need to determine the sign of the expression u^2 + u - 1 for different intervals.
When u < -1.61803: u^2 + u - 1 is positive since both u^2 and u are positive, and -1 is negative.
When -1.61803 < u < 0.61803: u^2 + u - 1 is negative since u^2 is positive, u is negative, and -1 is negative.
When u > 0.61803: u^2 + u - 1 is positive since both u^2 and u are positive, and -1 is negative.
Now, we need to translate the values of u back into x values using u = lg(x/10):
When lg(x/10) < -1.61803: x/10 < 10^(-1.61803)
When -1.61803 < lg(x/10) < 0.61803: 10^(-1.61803) < x/10 < 10^(0.61803)
When lg(x/10) > 0.61803: x/10 > 10^(0.61803)
Finally, we can convert the above inequalities back to x:
x < 10^(-1.61803 + 1) = 10^(-0.61803) ≈ 0.2367
10^(-1.61803) < x < 10^(0.61803 + 1) = 10^(1.61803) ≈ 5.0589
x > 10^(0.61803 + 1) = 10^(1.61803) ≈ 5.0589
So, the solution to the inequality is approximately:
x < 0.2367 or x > 5.0589
Keep in mind that logarithms are not defined for non-positive values, so x must be greater than 0 for this inequality to be valid. Therefore, the final solution is:
x ∈ (0, 0.2367) ∪ (5.0589, +∞)
Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
