Вопрос задан 21.07.2023 в 00:17. Предмет Алгебра. Спрашивает Влизкова Алёнушка.

ДОКАЖИТЕ ТОЖДЕСТВО cos(a-b)+sin(-a)sin b=cos a cos b

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Голубь Алина.

Cos(α - β) + Sin(-α)Sinβ = CosαCosβ + SinαSinβ - SinαSinβ = CosαCosβ

CosαCosβ = CosαCosβ

Тождество доказано

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для доказательства данного тождества, мы начнем с левой стороны и будем преобразовывать ее, используя тригонометрические тождества, чтобы получить правую сторону.

Дано тождество: cos(a - b) + sin(-a) * sin(b) = cos(a) * cos(b)

  1. Используем тригонометрическое тождество для разности углов: cos(a - b) = cos(a) * cos(b) + sin(a) * sin(b)

  2. Заменим sin(-a) на -sin(a): cos(a) * cos(b) + (-sin(a)) * sin(b) = cos(a) * cos(b) - sin(a) * sin(b)

  3. Перенесем второе слагаемое на правую сторону уравнения: cos(a) * cos(b) = cos(a) * cos(b) - sin(a) * sin(b)

  4. Теперь вычтем cos(a) * cos(b) из обеих сторон уравнения: 0 = -sin(a) * sin(b)

  5. Умножим обе стороны на -1, чтобы избавиться от знака минуса: 0 = sin(a) * sin(b)

Таким образом, мы доказали, что левая сторона равенства равна 0, что также верно для правой стороны. Следовательно, тождество cos(a - b) + sin(-a) * sin(b) = cos(a) * cos(b) верно.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос