Вопрос задан 16.07.2018 в 22:05. Предмет Алгебра. Спрашивает Кондратьева Елизавета.

Докажите по индукции, что для любого натурального числа n выполняется неравенство: 2 + 4 + 6 + ...

+ 2n = n (n + 1) (и поясните, пожалуйста, каждый шаг доказательства)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кокорева Арина.

1. Проверим справедливость этого утверждения для  n=1
2=1*(1+1),  т.е. 2=2  верно
2.Предположим, что заданное  равенство выполняется при  n=k, т.е. предположим, что верно равенство
2+4+6+...+2к=к(к+1)
Докажем, что равенство верно и при n=к+1. Оно получается,если вместо n подставить к+1 в обе части заданного равенства
2+4+6+...+2к+2(к+1)=(к+1)(к+2)
2+4+6+...+2к+2(к+1)=(2+4+6+...+к)+2(к+1)=к(к+1)+2(к+1)= (к+1)(к+2).верно(смотри предположение 2.) Следовательно, заданное равенство справедливо для любого натурального числа n

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос